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Overview The Big Question

What is Computational Combinatorics?

Using a combination of

pure mathematics,
algorithms, and
computational resources

to solve problems in pure combinatorics by

providing evidence for conjectures,
finding examples and counterexamples, and
discovering and proving theorems.
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Overview The Big Question

The Goal

Determine if certain combinatorial objects exist with given
structural or extremal properties.
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structural or extremal properties.

Examples:
1 Is there a projective plane of order 10?

(Lam, Thiel, Swiercz, 1989)

2 When do strongly regular graphs exist?
(Spence 2000, Coolsaet, Degraer, Spence 2006, many others)

3 How many Steiner triple systems are there of order 19?
(Kaski, Östergård, 2004)
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Overview The Big Question

Combinatorial Object: Graphs

A graph G of order n is composed of a set V (G) of n vertices and a
set E(G) of edges, where the edges are unordered pairs of vertices.

Stephen Hartke (UNL) Uniquely Kr -Saturated Graphs 5 / 1



Overview The Big Question

Combinatorial Object: Graphs

Cycles Ck

C3 C4 C5 C6

Complete Graphs Kr (cliques)

K3 K4 K5 K6
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Overview Combinatorial Search

Main Technique: Combinatorial Search

Goal: Determine if certain combinatorial objects exist with given
structural or extremal properties.

Idea: Build objects piece-by-piece from base examples to
enumerate all desired examples of a given order.

The computer performs a long, detailed case analysis.

Our job is to efficiently design the case analysis, using algorithms:

Combinatorial Generation
Combinatorial Optimization
Graph Algorithms
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Overview Combinatorial Search

Example: Generating Graphs by Edges

We can build graphs starting at Kn by adding edges.
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Overview Combinatorial Search

Example: Generating Graphs by Edges

An isomorphism between G1 and G2 is a bijection from V (G1) to
V (G2) that induces a bijection from E(G1) to E(G2).

1

2

34

5 6
7

89

10

2
3

4

5
67

8

9

10

1 1

2

34

5 6

7

89

10

Stephen Hartke (UNL) Uniquely Kr -Saturated Graphs 9 / 1



Overview Combinatorial Search

Labeled Versus Unlabeled Objects

A labeled graph has a linear ordering on the vertices.

An unlabeled graph represents an isomorphism class of graphs.

Most interesting graph properties are invariant under isomorphism.
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n Labeled graphs of order n

6 32,768

7 2,097,152

8 268,435,456

9 68,719,476,736

10 35,184,372,088,832

11 36,028,797,018,963,968

12 73,786,976,294,838,206,464

13 302,231,454,903,657,293,676,544

14 2,475,880,078,570,760,549,798,248,448

15 40,564,819,207,303,340,847,894,502,572,032

2(n
2) ≈ 2θ(n2)



n Unlabeled connected graphs of order n

6 85

7 509

8 4,060

9 41,301

10 510,489

11 7,319,447

12 117,940,535

13 2,094,480,864

14 40,497,138,011

15 845,480,228,069

OEIS Sequence A002851 Grows 2Ω(n2).
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15 845,480,228,069

Requires about 1 day of CPU Time.
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11 7,319,447

12 117,940,535

13 2,094,480,864

14 40,497,138,011
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Requires over 1 year of CPU Time.
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Shifting the Exponent
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Overview Combinatorial Search

Example: Generating Graphs by Edges

Unlabeled Graphs

Stephen Hartke (UNL) Uniquely Kr -Saturated Graphs 14 / 1



Overview Combinatorial Search

Example: Generating Graphs by Edges

Unlabeled Graphs

Stephen Hartke (UNL) Uniquely Kr -Saturated Graphs 14 / 1



Overview Combinatorial Search

Example: Generating Graphs by Edges

Unlabeled Graphs

Stephen Hartke (UNL) Uniquely Kr -Saturated Graphs 14 / 1



Overview Combinatorial Search

Example: Generating Graphs by Edges

Unlabeled Graphs

Multiple paths to
same unlabeled

object!
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Overview Search as a Poset

Toy Example

Suppose we are searching for graphs which are:

1 4-regular: All vertices have 4 incident edges.
2 3-colorable: The vertices can be colored with three colors so that

no edge is monochromatic.
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Kn

KnUnlabeled graphs



Unlabeled graphs

4-regular, 3-chromatic graphs



Sub-solutions

Unlabeled graphs



Unlabeled graphs

Detectably not sub-solutions
∆(G) ≥ 5
χ(G) ≥ 4

Pruning



Unlabeled graphs Ideal Path



Unlabeled graphs Prune and Backtrack



Unlabeled graphs Multiple paths!
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Unlabeled graphs Multiple paths!



Unlabeled graphs Goal: Exactly one path.



Unlabeled graphs Goal: Exactly one path.



Unlabeled graphs Partition by subtrees.



Parallelize!



Overview Search as a Poset

Implementation

The TreeSearch library enables parallelization in the Condor
scheduler.

Executes on the Open Science Grid, a collection of supercomputers
around the country.
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Overview Search as a Poset

Computational Combinatorics

Computational
Combinatorics

Algorithms
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Performance
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Pure
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TreeSearch
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Uniquely Kr -Saturated Graphs H-Saturated Graphs

H-Saturated Graphs

Definition A graph G is H-saturated if

◦ G does not contain H as a subgraph. (H-free)
◦ For every e ∈ E(G), G + e contains H as a subgraph.

5-cycle 6-cycle

Example: H = K3 where Kr is the complete graph on r vertices.
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Uniquely Kr -Saturated Graphs H-Saturated Graphs

H-Saturated Graphs

Definition A graph G is H-saturated if

◦ G does not contain H as a subgraph. (H-free)
◦ For every e ∈ E(G), G + e contains H as a subgraph.

5-cycle 6-cycle
is K3-saturated is not K3-saturated

Example: H = K3 where Kr is the complete graph on r vertices.
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Uniquely Kr -Saturated Graphs H-Saturated Graphs

Turán’s Theorem

Theorem (Turán, 1941) Let r ≥ 3. If G is Kr -saturated on n vertices,
then G has at most

(
1− 1

r−1

) n2

2 edges (asymptotically).
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Uniquely Kr -Saturated Graphs H-Saturated Graphs

Turán’s Theorem

Theorem (Turán, 1941) Let r ≥ 3. If G is Kr -saturated on n vertices,
then G has at most

(
1− 1

r−1

) n2

2 edges (asymptotically).

r − 1 parts Many copies of Kr !

Stephen Hartke (UNL) Uniquely Kr -Saturated Graphs 20 / 1



Uniquely Kr -Saturated Graphs H-Saturated Graphs

Erdős, Hajnal, and Moon

Theorem (Erdős, Hajnal, Moon, 1964) Let r ≥ 3. If G is Kr -saturated
on n vertices, then G has at least (r−2

2 ) + (r − 2)(n− r + 2) edges.
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Uniquely Kr -Saturated Graphs H-Saturated Graphs

Erdős, Hajnal, and Moon

Theorem (Erdős, Hajnal, Moon, 1964) Let r ≥ 3. If G is Kr -saturated
on n vertices, then G has at least (r−2

2 ) + (r − 2)(n− r + 2) edges.

1-book 2-book 3-book
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Uniquely Kr -Saturated Graphs H-Saturated Graphs

Erdős, Hajnal, and Moon

Theorem (Erdős, Hajnal, Moon, 1964) Let r ≥ 3. If G is Kr -saturated
on n vertices, then G has at least (r−2

2 ) + (r − 2)(n− r + 2) edges.

1-book 2-book 3-book
Exactly one copy of Kr !
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Uniquely H-Saturated Graphs Definition

Uniquely H-Saturated Graphs

The Turán graph has many copies of Kr when an edge is added.

The books have exactly one copy of Kr when an edge is added.

Definition A graph G is uniquely H-saturated if G does not contain
H as a subgraph and for every edge e ∈ G admits exactly one copy of
H in G + e.
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Uniquely H-Saturated Graphs Uniquely Ck -Saturated Graphs

Uniquely Ck -Saturated Graphs

Lemma (Cooper, Lenz, LeSaulnier, Wenger, West, 2011)
The uniquely C3-saturated graphs are either stars or Moore graphs of
diameter 2 and girth 5.

Theorem (Hoffman, Singleton, 1964) There are a finite number of
Moore graphs of diameter 2 and girth 5.

?
C5 Petersen Hoffman– 57-Regular

Singleton Order 3250
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Uniquely H-Saturated Graphs Uniquely Ck -Saturated Graphs

Uniquely Ck -Saturated Graphs

Theorem (Cooper, Lenz, LeSaulnier, Wenger, West, 2011)
There are a finite number of uniquely C4-saturated graphs.

Theorem (Wenger, 2010)
The only uniquely C5-saturated graphs are friendship graphs.

Theorem (Wenger, 2010)
For k ∈ {6,7,8}, no uniquely Ck -saturated graph exists.

Conjecture (Wenger, 2010)
For k ≥ 9, no uniquely Ck -saturated graph exists.
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Uniquely H-Saturated Graphs Definition

Uniquely Kr -Saturated Graphs

We consider the case where H = Kr (an r -clique) for r ≥ 4.

(K3
∼= C3)

Definition A graph G is uniquely Kr -saturated if G does not contain
an r -clique and for every edge e ∈ G there is exactly one r -clique in
G + e.
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Uniquely H-Saturated Graphs Definition

Dominating Vertices

Adding a dominating vertex to a uniquely Kr -saturated graph creates a
uniquely Kr+1-saturated graph.

Call uniquely Kr -saturated graphs without a dominating vertex

r -primitive.
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Uniquely H-Saturated Graphs Known r -Primitive Graphs

r -Primitive Graphs

A uniquely Kr -saturated graph with no dominating vertex is r -primitive.

2-primitive graphs are empty graphs.

3-primitive graphs are Moore graphs of diameter 2 and girth 5.

?
C5 Petersen Hoffman– 57-Regular

Singleton Order 3250
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Uniquely H-Saturated Graphs Known r -Primitive Graphs

r -Primitive Graphs

A uniquely Kr -saturated graph with no dominating vertex is r -primitive.

For r ≥ 1, C2r−1 is r -primitive.

C5 C7 C9

(Collins, Cooper, Kay, Wenger, 2010)
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Uniquely H-Saturated Graphs Known r -Primitive Graphs

Uniquely K4-Saturated Graphs

10 vertices 12 vertices

Previously known 4-primitive graphs (Collins, Cooper, Kay, 2010)
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Uniquely H-Saturated Graphs Known r -Primitive Graphs

Computational Combinatorics

Computational
Combinatorics

Algorithms
High

Performance
Computing

Pure
Combinatorics

TreeSearch

Problem
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Uniquely H-Saturated Graphs Main Questions

The Problem

Goal: Characterize uniquely Kr -saturated graphs.

First Step: Reduce to r -primitive graphs.

1. Fix r ≥ 3. Are there a finite number of r -primitive graphs?

2. Is every r -primitive graph regular?
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Uniquely H-Saturated Graphs Computational Method

Edges and Non-Edges

Non-edges are crucial to the structure of r -primitive graphs.
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Uniquely H-Saturated Graphs Computational Method

Edges and Non-Edges

Non-edges are crucial to the structure of r -primitive graphs.

Edge Non-edge

Unassigned

Tricolored graph
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Uniquely H-Saturated Graphs Computational Method

Edges, Non-Edges, and Variables

Fix a vertex set {v1, v2, . . . , vn}.

For i , j ∈ {1, . . . ,n}, let

xi,j =


1 vivj ∈ E(G)

0 vivj /∈ E(G)

∗ vivj unassigned
.

A vector x = (xi,j : i , j ∈ {1, . . . ,n}) is a variable assignment.
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Uniquely H-Saturated Graphs Computational Method

Symmetries of the System

The constraints

◦ There is no r -clique in G.
◦ Every non-edge e of G has exactly one r -clique in G + e.

are independent of vertex labels.

Automorphisms of the tricolored graph define orbits on variables xi,j .
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Uniquely H-Saturated Graphs Orbital Branching

Orbital Branching

Orbital branching reduces the number of isomorphic duplicates.
(Ostrowski, Linderoth, Rossi, Smriglio, 2007)

Generalizes branch-and-bound strategy from Integer Programming.
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Branch-and-Bound

x is given
Variable xi,j is selected
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Branch-and-Bound

x is given
Variable xi,j is selected

xi,j
= 0

xi,j
= 1
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Orbital Branching

x is given
Orbit O is selected
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Uniquely H-Saturated Graphs Orbital Branching

Orbital Branching

x is given
Orbit O is selected

in orbit
xi,j = 1

for all {i , j} ∈ O
xi1,j1
= 0

xi2,j2
= 0

xi3,j3
= 0

xik ,jk
= 0
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Uniquely H-Saturated Graphs Orbital Branching

Computational Combinatorics

Computational
Combinatorics

Algorithms
High

Performance
Computing

Pure
Combinatorics

TreeSearchOrbital Branching

Problem
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Many nodes.

Small computation per node.



Fewer nodes.

More computation per node.



Uniquely H-Saturated Graphs Orbital Branching

Kr -Completions

For every non-edge we add, we add a Kr -completion:

xi,j = 0 if and only if there exists a set S ⊂ [n], |S| = r − 2,
so that xi,a = xj,a = xa,b = 1 for all a,b ∈ S.

S S S

r = 4 r = 5 r = 6
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Uniquely H-Saturated Graphs Orbital Branching

Orbital Branching with Kr -Completions

x is given
Orbit O is selected
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Orbital Branching with Kr -Completions
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Orbital Branching with Kr -Completions

Base Case
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Orbital Branching with Kr -Completions

Non-edge?
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Orbital Branching with Kr -Completions

Edge?
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Uniquely H-Saturated Graphs Orbital Branching

Orbital Branching with Kr -Completions

in orbit−→
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Uniquely H-Saturated Graphs Orbital Branching

Computational Combinatorics
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Uniquely H-Saturated Graphs Orbital Branching

Exhaustive Search Times

n r = 4 r = 5 r = 6 r = 7 r = 8
10 0.10 s 0.37 s 0.13 s 0.01 s 0.01 s
11 0.68 s 5.25 s 1.91 s 0.28 s 0.09 s
12 4.58 s 1.60 m 25.39 s 1.97 s 1.12 s
13 34.66 s 34.54 m 6.53 m 59.94 s 20.03 s
14 4.93 m 10.39 h 5.13 h 20.66 m 2.71 m
15 40.59 m 23.49 d 10.08 d 12.28 h 1.22 h
16 6.34 h 1.58 y 1.74 y 34.53 d 1.88 d
17 3.44 d 8.76 y 115.69 d
18 53.01 d
19 2.01 y
20 45.11 y

Total CPU times using Open Science Grid.

(≈ 8.83× 1018 connected graphs of order 20)
Stephen Hartke (UNL) Uniquely Kr -Saturated Graphs 44 / 1



Uniquely H-Saturated Graphs Orbital Branching

Computational Combinatorics

Computational
Combinatorics

Algorithms
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Performance
Computing
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Custom
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Problem

Computation
Time
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Uniquely H-Saturated Graphs 4-Primitive Graphs

4-Primitive Graphs
n = 13

G(A)
13 Paley(13)
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Uniquely H-Saturated Graphs 5-Primitive Graph

5-Primitive Graph
n = 16 : G(A)

16
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5-Primitive Graph
n = 16 : G(A)

16

Not all r -primitive graphs are regular!
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Uniquely H-Saturated Graphs 5-Primitive Graph

7-Primitive Graph
n = 17 : G(A)

17
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7-Primitive Graph
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Uniquely H-Saturated Graphs Cayley Complements

The Cayley complement C(Zn,S) has vertex set {0,1, . . . ,n− 1}
and an edge ij if and only if |i − j | (mod n) /∈ S.

For r ≥ 1, C(Z2r−1, {1}) ∼= C2r−1 is r -primitive.

C5 C7 C9
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Uniquely H-Saturated Graphs Cayley Complements

Searching for r -Primitive Cayley Complements

To search for Cayley complements C(Zn,S) with |S| = g:

1. Select a generator set S = {a1 = 1 < a2 < a3 < · · · < ag} ⊆ Z.

2. Select an integer n > 2ag .

3. Compute r = ω(C(Zn,S)) + 1.

4. Check if C(Zn,S) + {0,ai} has a unique r -clique for all ai ∈ S.

Used Niskanen and Östergård’s cliquer software to compute ω(G).
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Used Niskanen and Östergård’s cliquer software to compute ω(G).

Stephen Hartke (UNL) Uniquely Kr -Saturated Graphs 51 / 1



Uniquely H-Saturated Graphs Cayley Complements

Searching for r -Primitive Cayley Complements

To search for Cayley complements C(Zn,S) with |S| = g:

1. Select a generator set S = {a1 = 1 < a2 < a3 < · · · < ag} ⊆ Z.

2. Select an integer n > 2ag .

3. Compute r = ω(C(Zn,S)) + 1.

4. Check if C(Zn,S) + {0,ai} has a unique r -clique for all ai ∈ S.
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Uniquely H-Saturated Graphs Cayley Complements

Two or Three Generators

S r n
{1,4} 7 17

{1,6} 16 37

{1,8} 29 65

{1,10} 46 101

{1,12} 67 145

g = 2

S r n
{1,5,6} 9 31

{1,8,9} 22 73

{1,11,12} 41 133

{1,14,15} 66 211

{1,17,18} 97 307

g = 3
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Uniquely H-Saturated Graphs Cayley Complements

Infinite Families

Conjecture (Hartke, Stolee, 2012) Let t ≥ 1,

n = 4t2 + 1, and r = 2t2 − t + 1.

The Cayley complement C(Zn, {1,2t}) is r -primitive.

Conjecture (Hartke, Stolee, 2012) Let t ≥ 1,

n = 9t2 − 3t + 1 and r = 3t2 − 2t + 1.

The Cayley complement C(Zn, {1,3t − 1,3t}) is r -primitive.
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Infinite Families

Theorem (Hartke, Stolee, 2012) Let t ≥ 1,

n = 4t2 + 1, and r = 2t2 − t + 1.

The Cayley complement C(Zn, {1,2t}) is r -primitive.

Proof uses counting method.

Theorem (Hartke, Stolee, 2012) Let t ≥ 1,

n = 9t2 − 3t + 1 and r = 3t2 − 2t + 1.

The Cayley complement C(Zn, {1,3t − 1,3t}) is r -primitive.

Proof uses discharging method.
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Uniquely H-Saturated Graphs Cayley Complements

Computational Combinatorics
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Uniquely H-Saturated Graphs Cayley Complements

What Next?
Technique-specific

1. Orbital Branching: Formalize custom augmentations for arbitrary
constraint systems. Apply to problems like strongly regular graphs.

2. Discharging: Automate process so computer can discover and
write proofs.

3. More Techniques: Find, Adapt, or Develop.
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